Holes, cracks, or inclusions in two-dimensional linear anisotropic viscoelastic solids

Van Thuong Nguyen, Chyanbin Hwu *

Institute of Aeronautics and Astronautics, National Cheng Kung University, Tainan, Taiwan, ROC

A R T I C L E I N F O

Article history:
Received 2 November 2016
Received in revised form 19 December 2016
Accepted 28 January 2017
Available online 21 February 2017

Keywords:
Viscoelasticity
Correspondence principle
Anisotropic elasticity
Stroh formalism
Hole
Crack
Inclusion

A B S T R A C T

By combining the elastic-viscoelastic correspondence principle with the analytical solutions of anisotropic elasticity, the problems of two-dimensional linear anisotropic viscoelastic solids can be solved directly in the Laplace domain. After getting the solutions in the Laplace domain, their associated solutions in real time domain can be determined by numerical inversion of Laplace transform. Following this general adopted process, the problems of holes, cracks, or inclusions in two-dimensional linear anisotropic viscoelastic solids, which appear frequently in polymer matrix composites and cannot be solved directly by the commonly used commercial finite elements, are solved in this paper. Here, the hole can be elliptical or polygon-like; the crack can be a single crack, or two collinear cracks, or an interface crack; and the inclusion can be rigid, elastic or viscoelastic. The loads considered include the uniform load at infinity, and the point force applied at the arbitrary location. The solution of the point force is then employed as the fundamental solution of boundary element method which is used for further comparison of the analytical solutions. The accuracy and efficiency of the presented solutions are illustrated through four representative numerical examples which involve four isotropic viscoelastic and two anisotropic viscoelastic materials.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Polymer matrix composites exhibit not only anisotropic (directional-dependent) but also viscoelastic (time-dependent) behaviors. Although there are many different kinds of commercial software working on the stress analysis of composite materials, most of them only provide the functions for isotropic elastic, anisotropic elastic, or isotropic viscoelastic materials, almost none of them consider the analysis of anisotropic viscoelastic solids. Additional works are required for some of them.

The elastic-viscoelastic correspondence principle was proposed long time ago [1]. It states that a problem in linear elasticity is identical to one in viscoelasticity in the transformed domain. Although this principle is simple and is applicable for a time-independent boundary value problem, due to the complexity of the analytical solutions for the corresponding problems of anisotropic elasticity, its application to the anisotropic viscoelastic solids is not that direct. And hence, not too many results have been presented for the anisotropic viscoelastic solids by combining the correspondence principle with the analytical solutions of anisotropic elasticity. Most of the successful applications are restricted to the cases of isotropic viscoelastic solids — homogeneous or nonhomogeneous, such as [2–6], etc. For the cases of anisotropic viscoelastic solids, only the application to finite element method (FEM), boundary element method (BEM) and the problems of interface corners have been discussed [7–9].

Since several analytical solutions have been presented for the problems with holes/cracks/inclusions in anisotropic elastic solids [10], in this paper we try to provide new results of their corresponding anisotropic viscoelastic solids by using the correspondence principle. Through the use of this principle, the well-known Stroh complex variable formalism in the Laplace domain of viscoelasticity can be proved to have the same mathematical form as that of anisotropic elasticity [9]. After getting the displacements, strains and stresses in the Laplace transform domain from the solutions obtained by Stroh formalism, their associated solutions in real time domain can be determined by numerical inversion of Laplace transform. In this paper Schapery method is adopted to transfer a series of data in Laplace domain into time domain [11]. To show the correctness of our semi-analytical solutions, several examples are illustrated with comparison made by finite element method and boundary element method. These examples include the two-