脫層混合模式起裂判據之探討

高聰哲
士林機電
胡潛濱
成大航太所

摘 要

由文獻上顯示，脱層是一種混合模式之破壞，並非單一的G_C值能加以判斷。而在各種實驗中如DCB (Double Cantilever Beam)，ENF (End Notched Flexure)，CLS (Cracked Lap Shear)等皆顯示其G_C值不同。其中對脫層所作的DCB和ENF實驗已獲証(Chang和Hwu,1993)為近似純模式I和II破裂之實騐，有助於量測含脫層試片之G_{IC}, G_{II}。為探討脫層混合模式破壞之起裂判據，本文進行一連串之CLS實驗及修正之ENF(Modified ENF)實驗和有限元分析。結果顯示，不論脫層上下層板之纖維轉角如何變化，脫層起裂時所計算得到之G_{IC}, G_{II}值幾乎不受影響，且在本文的CLS實驗中其G_{IC}和G_{II}所佔之比例極為穩定，分別達22.5%和77.5%，此一比例又與文獻所列單向複材CLS實驗相近，而修正之ENF實驗中之G_{IC}, G_{II}比值亦有相同的結論，因此本文仿效單向複材之混合模式起裂判據建立含脫層複層板之混合模式起裂判據。公式中的破裂參數有別於傳統之破裂參數(Hwu,1993)所提出之界面裂縫破裂參數

一、簡介

目前廣泛被使用的複合材料中，以由單向單層複材(Lamina)按各種不同角度堆疊而成的複合層板(Laminate)最為普遍。其優點是在沿纖維的方向上具有高強度和高硬度，而在垂直於纖維的方向上其強度和硬度較低。因此我們可以較少的材料重量，達到設計者的要求。其缺點就是在垂直層板疊堆方向上的強度較差，且在層與層之間常會因製造時的瑕疵和運送過程中的碰撞等，而造成分離現象(Delamination)，就是所謂的脫層(Delamination)。而此脫層起初都很小，但會因承受的負荷過大而漸進地成長，致使層板損壞而不堪使用，因此脫層的起裂與成長可說是研究複合材料的一大課題。而本文所要探討的即是利用混合模式的

脫層實驗和有限元分析，建立脫層的起裂判據(Criterion)，以有效地預測脫層的起裂和成長。

歷來在於複合材料脫層起裂的研究相對不多，所採用的準則大多是傳統破壞性荷重上使用的應力強度因子和應變能釋放率$K_{IC}, K_{II}, G_{IC}, G_{II}$的臨界值。也有使用層間應力的臨界值做為判斷準則，但由線彈性破壞性荷重得知其裂縫尖端存在奇異性，因此使用此方法的可靠性便大為降低。此外，關於脫層的實驗方法有DCB (Double Cantilever Beam)，ENF (End Notched Flexure)，CLS (Cracked Lap Shear)，MMF (Mixed-Mode Flexure)，ARCAN等，而這些研究中有的只針對單一的脫層實驗探討其G_C，如(Smiiler and Pipes, 1987)的DCB、(Carlsson et al., 1986)的ENF、(Hojo and Holm, 1989)的CLS等，也有以兩種以上的實驗方法探討其脫層起裂的判據，如(Ressell and Street, 1985)以DCB，ENF，CLS，MMF等實驗方法。但以上實驗都是針對單向複材(Unidirectional Composite)，因此其脫層層面上的材質是相同的，也就是其脫層起裂的行為和一般等向性材質中的裂縫的行為是一樣的。然而複合材的脫層現象可能發生在任何層與層之間，因此以上的結果並不適用於任何一種脫層起裂。而由於複合材料的脫層現象是某種界面裂縫，而在層與層間的材質不同時，其裂縫尖端會有振盪現象(Williams,1950)，而使得傳統的破裂參數不存在。基於上述的理由，在本文中本文在針對脫層上下相異材質的情況，特別引用一廣義之破裂參數(Wu,1990, Hwu,1993)，以期獲得脫層起裂時的$K_{IC}, K_{II}, G_{IC}, G_{II}$。而關於脫層起裂判據，早期使用應變能釋放率的臨界值G_C，然而由(Chang和Hwu, 1993)和(Ressell and Street, 1985)中可發現各實驗所得之G_C並不相同，此外由(Williams,1950)文中得知複合材料的脫層現象是一種混合型的破壞，也就
是由单一荷重可引發裂縫、裂縫及斷裂等三種破壞模式，因此裂層起裂判據不應是单一的。而在本文中將得脱層混合模式的起裂判據，做了混合模式的脫層破壞實驗-CLS及Modified ENF實驗，其中由CLS實驗的結果發現其 \(G_{I} / G_{II} \) 約為 0.3，大致與傳統單向複材CLS實驗所得的結果接近。而Modified ENF實驗中的 \(G_{I} / G_{II} \) 約為 1.43，亦與（Yoon and Hong,1990）中單向複材試驗的結果相近，因此本文仿效單向複材的混合模式裂開判據，建立含裂層之裂開判據。此起裂判據如下所示：

\[
\left(\frac{K_{I}}{K_{IC}} \right)^{m} + \left(\frac{K_{II}}{K_{IIC}} \right)^{n} + \left(\frac{K_{III}}{K_{IIIC}} \right)^{t} = 1
\]

\[m, n > 2 \quad (1.1)\]

式中 \(m, n \) 由各實驗所得不同比例之 \(G_{I}, G_{III}, G_{II} \) 以最小平方法（Least-Square）求出。

此外由於在（Chang and Hwu, 1993）中曾提及脫層交界面下層板之織維轉角以及破壞韌性 \(G_{IC}, G_{IIC} \) 的影響極小。因此本研究針對CLS及Modified ENF實驗做相同之試驗，以瞭解在混合模式之破壞實驗下其結果是否相同。

二 實驗方法

2.1 試片製作

本實驗為利用（Chang and Hwu, 1993）所得之實驗數據，採用與其相同之材料Fiberite ICI公司所製造的玻璃織維及環氧樹脂單向預浸布（Glass Fiber/Epoxy Prepreg）。其材料規格如下（東元製造）：

\[
E_1 = 44.66 \text{ GPa} \\
E_2 = 18.00 \text{ GPa} \\
E_3 = 18.00 \text{ GPa} \\
G_{12} = 9.69 \text{ GPa} \\
G_{13} = 9.69 \text{ GPa} \\
G_{23} = 9.69 \text{ GPa} \\
\nu_{12} = 0.26 \\
\nu_{13} = 0.26 \\
\nu_{23} = 0.26
\]

同樣地為探討脫層下層織維角度對脫層起裂的影響，製造層板時依 \(0^\circ, 45^\circ, 90^\circ \) 之順序疊放。其中 \(^\circ \) 及 \(^\circ \) 分別為脫層下層板之織維轉角，而上下各加四層 \(0^\circ \) 層板主要是為了降低試片的扭曲及使試片有足夠強度承受負荷。另外在 \(\theta^\circ \) 及 \(\theta^\circ \) 層板間則預埋了 0.0025mm 之 A4000RPS（Teleon Film），當模具起裂後，試片於熱壓機上，其加熱加壓程序為首先加壓 24 小時後使負載加壓 (123°C) 60 分鐘，再加壓 0.55~0.65MPa，並加熱至 176°C。此時預熱（0.55MPa~0.65MPa）及加熱（176°C）二小時後降溫。

完成加熱加壓之後再將試片切割成如圖1，其中CLS試片長 254 mm、寬 25.4 mm，Modified ENF試片長 120 mm、寬 25.4 mm，而裂縫長度則視實驗所需而定。

2.2 實驗程序

本實驗採用CLS及Modified ENF實驗是為混合裂縫和剪裂的破壞實驗，所以“裂縫偏斜”的現象無法避免，且在裂縫延伸一段距離後會有“裂縫輔助”的現象發生。此二現象都會影響到實驗所得之 \(G_{I} \) 之值（Chang and Hwu, 1993）。為避免此二因素對裂縫輔助及卸載過程（Load-Unload）使用位移控制（Displacement Control）。其它可能之影響因素則維持固定加荷速度為 0.008 cm / sec 一定，M15 NTN 材料試驗機夾頭速度定為 0.008 cm / sec 等。

2.2.1 CLS 實驗

整個CLS之載重及裝置如圖2a，實驗前分別在試片二側塗修正液（以方便觀察裂縫之生長），並以裂縫起始點之後約 3mm 之點為載荷點，直至裂縫開始延伸並穩定延伸至第一個載荷點（3mm 處），此時的載荷才可視為自然裂縫，然後卸載、昇序。再重複前述步驟，直到裂縫成長至第二個載荷點（8mm 處），此時之載荷可視為臨界載荷（Pc），將其記載起來以便演算法模擬時，當作輸入之荷重。而在一般複材之破壞實驗中，裂縫偏斜與織維輔助之現象（在 4.1 节中詳細介紹）會影響實驗結果，尤其在裂縫延伸距離愈長時愈易發生。因此為求得正確之結果，吾人於多次之實驗後發現 5mm 之距離較佳，既可避免以上二種現象的影響，亦可獲得明顯之裂縫延伸。因此本實驗中以 8mm 之處為裂縫第二次延伸之點，而此時記載所得之載荷即為裂縫輔助時之載荷。而在CLS實驗中 \(G_{I} \) 之實驗值可由柔度法計算如下式（Carlsson and Pipes, 1987）：

\[
G_{I} = \frac{P_{c}^{2} \delta}{2B \Delta a}
\]

\[P_{c}: \text{載荷荷重} (N) \]
\[a: \text{裂縫長度} (mm) \]
\[B: \text{寬度} (mm) \]
\[C: \text{柔度} (mm/N) \]
式中用度 C' 就是硬一次裂纹延时所紀錄的荷重
與位移，畫出位移／荷重之圖，其斜率便是柔度值。
而由於我們有4種不同预埋裂纹长度之試片，每一
種試片至少可得一組柔度與裂紋长度之關係，使我們
有足夠數據，利用 linear fitting 的方法求得 $\delta C' / \delta a'$，
進而求得 G_C之實驗値。

2.2.2 Modified ENF 實驗

Modified ENF 實驗之載重與裝置如圖2b，採用
如CLS之實驗程序，而其 G_I, G_{II} 可由下式求得(Yoon
and Hong,1990):

$$G_I = \frac{3P^2d^2}{16E_dB^2h^3}\frac{1}{\xi^2}(1+\psi)$$

$$G_{II} = \frac{9P^2d^2}{16E_dB^2h^3}\frac{1}{\xi^2}(1+\psi)$$

(2.2)

若不考慮剪力效應則 $A = 0$，反之則 $A = \kappa \varepsilon x^2(1-\xi)(1+\psi)/3G_{xy}\psi$, 其中 κ 為剪力係數(Shear Coefficient)在此
因試片截面為矩形，所以 $\kappa = 1.56$，E_d 為試片 y 方向
的楊氏模數，G_{xy} 為 $\gamma - \gamma$ 向的剪力模數(如圖1 中所示)，P_0 為載荷，$\psi = (1-\xi)/\xi$, $\xi = h_1/2h_2$，其它參數可見圖1b 所示。而 Modified
ENF 實驗基本上是一混合張裂與撕裂之破壞實驗，
因此其 G_{III} 應趨近零，且從有限單位模擬可得 G_{III}
遠小於其它模式之値，所以可以取其 G_C 如下：

$$G_C = G_I + G_{II}$$

(2.3)

三 數值模擬

在前一章由實驗數據計算所得之 G_C 值，並不能
直接幫助我們獲得我們所要的裂紋判斷，而仍須靠
數值分析模擬實驗狀態，將各個模式的應變
能釋放率求出，以配合 (1.1) 式計算 l, m, n 之値。因此
本文提出一有限元並配合(Chang and Hwu, 1993)所
提的等效之破壞參數，以獲得各模式之破壞參數
以下僅就等效之破壞參數及有限單位作一介紹。

3.1 廣義之破壞參數

對於非均質複合材料交界面裂纹問題如脆層，
一般傳統定義之應力強度因子 K_I, K_{II}, K_{III} 及應變能
釋放率 G_I, G_{II}, G_{III} 可能會因裂纹尖端之張裂現象
而無法存在。有鑑於此(Hwu,1993)分別以所推導出之
應力場及位移場定義界面裂纹之破壞參數如下：

$$ \begin{bmatrix} K_{II} \\ K_{I} \end{bmatrix} = \lim_{r \to 0} \sqrt{2\pi r} \bar{A} \ll (r/l)^{-i_\alpha} \gg \bar{A}^{-1} \begin{bmatrix} \sigma_{12} \\ \sigma_{22} \end{bmatrix} \tag{3.1} $$

$$ G_I = \frac{1}{2} \frac{\Delta}{a} \int_0^{\Delta} \Delta u_2(s - \Delta a)\sigma_{22}(s)ds $$

$$ G_{II} = \frac{1}{2} \frac{\Delta}{a} \int_0^{\Delta} \Delta u_1(s - \Delta a)\sigma_{12}(s)ds $$

$$ G_{III} = \frac{1}{2} \frac{\Delta}{a} \int_0^{\Delta} \Delta u_3(s - \Delta a)\sigma_{22}(s)ds $$

式中 $\ll \gg$ 是對角矩陣，l 是長度參數，不同之 l 值將
會改變 K 之大小，亦會影響其相角，在此我們參考
(Rice,1985) 所提，取 l 為裂紋長度 ε_0 及 A 為下列特
徵值問題之特徵值及特徵向量 (Hwu, 1993)

$$ (M^* + \epsilon^2 \lambda I^*) \lambda = 0 $$

(3.3)

式中 M^* 為雙材料矩陣 (Bimaterial Matrix)，特徵值
$\varepsilon_0 = -\frac{1}{2} + i \alpha_0, \alpha = 1,2,3 \varepsilon_0$ 是張裂指數， λ 則是由不同
特徵向量所組成如下式

$$ \lambda = [\lambda_1, \lambda_2, \lambda_3]^T $$

特徵向量 λ_0 則由各特徵值 α_0 代入(3.3) 式可得，同時
經由下列之正交化得出唯一解

$$ \frac{\partial^2}{\partial x^2} \Delta A = \Delta $$

式中 Δ 為雙材料矩陣 M^* 之實部。

傳統定義之 Δa 應趨近零，但因前面所言的張裂現象
將使 Δa 無法收玫。而依(Sun and Jih, 1987) 的研究知
Δa 在某一區間算出之 G 值將趨近一常數，他們建議該值
可以應用於實際問題上，而此
時所選擇之微小變量 Δa 或許與材料有關，在本文中
Δa 取 $0.08a$ 係根據實際計算所得較穩定之區間
ε_0 為產生張裂現象之根源，因在理論分析求異質界
面裂纹問題時，無可避免在應力場及位移場之解上
有 $\varepsilon^* \alpha$ 項出現，若考慮裂纹上下面之材料為同一材
料則均質材料，則 $\varepsilon_0 = 0$，張裂現象即消失，廣義定
義之 K, G 可退化至傳統定義之 K, G。而此廣義定義
在 (Chang and Hwu, 1993) 中已得到不錯的結果，所以
本文亦將採用，以期利用此一廣義定義之破壞參數
計算出各模式之破壞參數，進而建立裂紋之起裂判
斷。

3.2 有限單位分析

在此本文欲模擬之試片乃是一三維問題，但因
其側向之變化極小（如圖1中之x方向），因此我們可將之簡化為一準三維之問題，亦即假設位移為

\[u = u(y, z), \quad v = v(y, z), \quad w = w(y, z) \]

其中 \(u, v, w \) 分別代表 \(y, z \) 方向之位移。此假設與（Yen and Hwu, 1993）所設計之有限元法相同，因此本文將利用其設計之有限元法（如圖1a），即採用 – 8 質點

\[\frac{dG}{da} = \frac{(E_2/t_1 - E_1/t_3)E_1E_2B}{E_1E_2} \]

四 \ 遠技術結果分析

4.1 \ 遠技術現象之探討

在本遠技術中共針對16組不同 \(\theta^\parallel /\theta^\perp \) 的纖維轉角進行CLS及Modified ENF遠技術及數值模擬，而在一章中曾提及為了避免纖維機構及裂縫偏斜的發生

影響 \(G_G \) ，因此採用四組不同裂縫長度的試片，然後取第二循環所得之值。但在（Chang and Hwu, 1993），(織，民國81年) 中均提及裂縫偏斜乃因裂縫上下纖維

\[G_G = \frac{P_G^2 \beta C}{2B \beta a} \]

\(t_1, t_2 \) 及 \(B \) 如圖1a所示，而 \(E_1 \) 是試片突出的

部分沿y方向之角度（如圖1a中標示1之部分），\(E_1 \) 則是試片在圖1a中標示2之部分沿y方向之

\[\theta^\parallel = 0^\circ \text{ 至 } 60^\circ, \quad \theta^\perp = 60^\circ \text{ 至 } 105^\circ \]
其$G_{f, G_{III}}$的比值如表2中所示，分佈在0.269到0.31之間，也就是G_{II}約佔總 ALPHA释能釋放率的76.3～78.8％。

此表（Law and Wilkins, 1984）中單向複材試驗的結果

相同於(3.81)；而與(Ramakumar and Whitcomb, 1985)，(Hofy和Holm, 1989)則相差有差距，但在(Law and Wilkins, 1984)中

曾提及試片的厚度會影響G_{II}所佔的比值，所以這

應是正常的。

圖5是荷重與位移關係圖，其中我們可發現當裂

縫開始延長時，原本的直線便傾斜一點，這是因為

裂縫延長後其失調程度與裂縫間的荷重變化得到較

大的位移量。此外在四種不同長度的裂縫延伸大約

相同的距離後，其臨界荷重P_c相差無幾（如圖5），

此結果與(Ramakumar and Whitcomb, 1985)，(Carlsson

和Pipes, 1987)中的結論相近。而圖6是柔度及裂縫

長度關係。於圖中我發現其近似為○線性關係，

如此在求$rac{3C}{3a}$將比較容易些。

而本文針對微晶轉角與應變能釋放率的結果如

圖7所示，其中圖7是45°/ 90°G_1, G_2，圖中之小圓圈

為各試片之平均值，而圓圈上下之直線表各試片之

G_C之範圍，於圖中此可見其值分佈雖有差距，但仍

接近一帶狀分布，而各試片之高低值亦相差不大。

我們可得知CLS實驗所得之破裂參數值受微晶轉角

之影響很小，此與(Chang and Hwu, 1996)中之結論相

同。

4.2.2 Modified ENF實驗

本文實驗與傳統ENF實驗相似，只不過在試片

的一端切除一部分（如圖1b），整個實驗過程則和

ENF是相同的。其實驗結果和有限單元模擬結果如表3所示，

其中G_C與G_T的誤差值約4.65%，在圖8中亦顯

示G_C與G_T之差值有限。而G_C/G_T與G_T/G_C之比值為

0.588與0.412（見表4），與(Yoon和Hong, 1999)中單

向複材試驗之結果相差無幾。此外，由於在(Chang

和Hwu, 1999)中的DCB,ENF與本實驗中CLS實驗

皆發現微晶轉角對破裂參數臨界值的影響很小，所

以我們可大體預測在Modified ENF實驗中應有相同

之結論，而由圖9中可發現其預測是正確的，因此

我們有一結論即是脫層成長所需之能量與脫層上下

微晶轉角無關。

4.3 混合模式破裂判據

一準確的脫層裂紋判據有助於預測脫層的起

裂，也能預測含脫層之剛板所能承受之最小荷重，

進而有效地控制加於於材料上的荷重，減少材料的

損耗。而為求得一脫層混合模式的裂紋判據，需要

做種不同實驗以獲得這種模式的G_C值及混合模

式的G_{f, G_{III}, G_{III}'}，就如同第一章所介紹的一樣。因

此在本文中利用(Chang和Hwu, 1993)中所量測得的

G_{T, G_{III}, G_{III}'}，其中G_{T} = 206J/m^2, G_{III} = 567.7J/m^2，加

上本文中所得之混合模式的G_{f, G_{III}, G_{III}'}經由最小平方

法便可建立混合模式之裂紋判據。

一般單向複材的混合模式裂紋判據大都採用

如(1.1)之式，而由各種不同實驗證實脫層的DCB,

ENF, CLS, MENF等試驗結果皆與單向複材相對應之

試驗結果相似，同時在前節的說明中得知各破裂參

數與脫層上下之微晶轉角關係不大，因此在本文吾

大膽的假設脫層起裂之混合模式破裂判據亦如

(1.1)所示，惟此時之破裂參數有別於傳統之破裂參

數為(Hwu, 1993)所提出之多材料界面裂紋破裂哈諧。

而l, m, n之值則可由實驗數値內擇求得。本文因採

用CLS及Modified ENF實驗方法其斷裂模式(Ismo

)之影響甚小，所以在此我們不考慮n之值，因此脫

層起裂之判斷簡化如下:

$$\begin{align*}
\frac{K_i}{K_{IC}} + \frac{K_{II}}{K_{III}} &= 1 \\
\frac{G_i}{G_{T}} + \frac{G_{II}}{G_{III}} &= 1
\end{align*}$$

(4.1)

文獻上對於脫層起裂判據的研究並不多，且大都以單

向複材為對象。如在(Russell和Street, 1985)中針對材

質是石墨纖維／環氧樹脂單向周期化(Graphite/epoxy)

採用DCB, ENF, CLS, MMF等實驗方法，而結果是

l, m之值約為2。而在(Ramakumar and Whitcomb, 1985)

中雖有提及脫層起裂判據，但因其只採用DCB, CLS

實驗，所以在其文章中並未確定l, m, n之值，僅以三種

可能之判據加以模擬。

在本文中經實驗和數值模擬後，其CLS之結果

如表5所示G_{I, G_{III}}, G_{II, G_{III}}, G_{III, G_{III}}之分

佈大約在0.503～0.602之間，

G_{III, G_{III}}的分佈大約在0.646～0.74之間。而Modified ENF

實驗的結果如表6所示，其G_{I, G_{III}}, G_{II, G_{III}}, G_{III, G_{III}}

的分佈較為接近，分別為0.9245, 0.23325。以上結果

顯示CLS及Modified ENF實驗G_{I, G_{III}}, G_{II, G_{III}}之比是固定

的，也就是在圖10上CLS和Modified ENF僅各代表

一点，再加上由(Chang和Hwu, 1993)所得之DCB及

ENF試驗結果，我們便有四個不同數值去因(4.1)

式。由圖10顯示本研究所得之l, m, n應介在2, m, 3

與1, 3, m = 4之間，而經由材料方算法，我們得到l

約為2.678, m, n約為3.280。此外我們亦可由K_{I, G_{III}}及

K_{II, G_{III}}之值求得l, m, n，而由表5, 6及圖11經計算

得l = 2.616, m = 3.234。二者所得之值甚為接近，因

此我們取其均值l = 2.647, m = 3.260，而此l, m, n仍須以

實際實驗加以驗證。
五 結論

1. 經本研究實驗結果顯示，在CLS實驗中K_{II}小於K_{I}，K_{II}及G_{II}小於G_{I}, G_{II}, 而顯示是一個混合破裂和剪裂的破壞性實驗。根據前一章的實騐數據計算我們已獲得此裂層混合模式的破裂判據，如所示

\[
\frac{K_{I}}{K_{IC}} = 2.647 + \frac{K_{II}}{K_{IIC}} = 2.260 = 1 \\
G_{I} = 1.542 + \frac{G_{II}}{G_{IIC}} = 2.348 = 1
\]

(5.1)

2. 本文實驗所得G_{I}經觀察受纖維轉角影響很小，因此我們可知裂層起裂所需之能量，不受裂層上下纖維轉角影響。

3. 由於本文採用廣義之破裂參數，有別於傳統之破裂參數只能處理單向複材，因此本文之結果可應用於任何疊層板間之裂層現象。

4. 在本文中的CLS實驗中試片受力後裂縫會偏斜之試片δ', δ"，會往角度(絕對值)較大方向偏斜，如45°/0°，會往45°方向偏斜，偏斜不易程度δ'與δ"差異而定，如45°/−30°比30°/−60°不易偏斜(即絕對值差異越小越不易偏斜)，此結果是因纖維轉角較大者其與施力之方向的夾角較大，所以在此方向的韌性相對的就比較小而容易偏斜。

參考文獻

1. 王樹芬，脊向緊貼接電荷對玻璃纖維層板殘留強度及衝擊損傷之實驗與分析。成功大學航空太空研究所，民國80年8月。

2. 高聰哲，裂層混合模式起裂裂縫之探討之程式使用說明與範例。成功大學航空太空研究所，民國80年8月。

3. 周祥甫，複合材料機械性能之評估。成功大學航空太空研究所，民國79年9月。

4. 鄭文祥，複合材料接合界面裂層裂縫性之評估。成功大學航空太空研究所，民國81年6月。

Table 3

| Ply angle | G_{IC}/G|| G_{II}/G|| G_{I}/G|| K_{I}/K|| K_{II}/K|| K_{III}/K||
|-----------|---------|---------|---------|-------|-------|-------|
| 0/9 | 0.547 | 0.698 | 0.694 | 0.992 |
| 15/15 | 0.523 | 0.674 | 0.694 | 0.857 |
| 30/30 | 0.609 | 0.760 | 0.700 | 0.805 |
| 45/45 | 0.602 | 0.710 | 0.697 | 0.813 |
| 60/60 | 0.561 | 0.658 | 0.736 | 0.806 |
| 0/9 | 0.547 | 0.698 | 0.694 | 0.992 |
| 15/15 | 0.523 | 0.674 | 0.694 | 0.857 |
| 30/30 | 0.609 | 0.760 | 0.700 | 0.805 |
| 45/45 | 0.602 | 0.710 | 0.697 | 0.813 |
| 60/60 | 0.561 | 0.658 | 0.736 | 0.806 |
| 0/9 | 0.547 | 0.698 | 0.694 | 0.992 |
| 15/15 | 0.523 | 0.674 | 0.694 | 0.857 |
| 30/30 | 0.609 | 0.760 | 0.700 | 0.805 |
| 45/45 | 0.602 | 0.710 | 0.697 | 0.813 |
| 60/60 | 0.561 | 0.658 | 0.736 | 0.806 |
| 0/9 | 0.547 | 0.698 | 0.694 | 0.992 |
| 15/15 | 0.523 | 0.674 | 0.694 | 0.857 |
| 30/30 | 0.609 | 0.760 | 0.700 | 0.805 |
| 45/45 | 0.602 | 0.710 | 0.697 | 0.813 |
| 60/60 | 0.561 | 0.658 | 0.736 | 0.806 |
| 0/9 | 0.547 | 0.698 | 0.694 | 0.992 |
| 15/15 | 0.523 | 0.674 | 0.694 | 0.857 |
| 30/30 | 0.609 | 0.760 | 0.700 | 0.805 |
| 45/45 | 0.602 | 0.710 | 0.697 | 0.813 |
| 60/60 | 0.561 | 0.658 | 0.736 | 0.806 |

Table 4

<table>
<thead>
<tr>
<th>Ply angle</th>
<th>G_{IC}/G_{I0}</th>
<th>G_{II}/G_{I0}</th>
<th>G_{I}/G_{I0}</th>
<th>K_{I}/K_{I0}</th>
<th>K_{II}/K_{I0}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/9</td>
<td>0.547</td>
<td>0.698</td>
<td>0.694</td>
<td>0.992</td>
<td></td>
</tr>
<tr>
<td>15/15</td>
<td>0.523</td>
<td>0.674</td>
<td>0.694</td>
<td>0.857</td>
<td></td>
</tr>
<tr>
<td>30/30</td>
<td>0.609</td>
<td>0.760</td>
<td>0.700</td>
<td>0.805</td>
<td></td>
</tr>
<tr>
<td>45/45</td>
<td>0.602</td>
<td>0.710</td>
<td>0.697</td>
<td>0.813</td>
<td></td>
</tr>
<tr>
<td>60/60</td>
<td>0.561</td>
<td>0.658</td>
<td>0.736</td>
<td>0.806</td>
<td></td>
</tr>
<tr>
<td>0/9</td>
<td>0.547</td>
<td>0.698</td>
<td>0.694</td>
<td>0.992</td>
<td></td>
</tr>
<tr>
<td>15/15</td>
<td>0.523</td>
<td>0.674</td>
<td>0.694</td>
<td>0.857</td>
<td></td>
</tr>
<tr>
<td>30/30</td>
<td>0.609</td>
<td>0.760</td>
<td>0.700</td>
<td>0.805</td>
<td></td>
</tr>
<tr>
<td>45/45</td>
<td>0.602</td>
<td>0.710</td>
<td>0.697</td>
<td>0.813</td>
<td></td>
</tr>
<tr>
<td>60/60</td>
<td>0.561</td>
<td>0.658</td>
<td>0.736</td>
<td>0.806</td>
<td></td>
</tr>
</tbody>
</table>

Table 5

<table>
<thead>
<tr>
<th>Ply angle</th>
<th>G_{IC}/G_{G0}</th>
<th>G_{II}/G_{G0}</th>
<th>G_{II}/G_{G0}</th>
<th>K_{I}/K_{G0}</th>
<th>K_{II}/K_{G0}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/9</td>
<td>0.547</td>
<td>0.698</td>
<td>0.694</td>
<td>0.992</td>
<td></td>
</tr>
<tr>
<td>15/15</td>
<td>0.523</td>
<td>0.674</td>
<td>0.694</td>
<td>0.857</td>
<td></td>
</tr>
<tr>
<td>30/30</td>
<td>0.609</td>
<td>0.760</td>
<td>0.700</td>
<td>0.805</td>
<td></td>
</tr>
<tr>
<td>45/45</td>
<td>0.602</td>
<td>0.710</td>
<td>0.697</td>
<td>0.813</td>
<td></td>
</tr>
<tr>
<td>60/60</td>
<td>0.561</td>
<td>0.658</td>
<td>0.736</td>
<td>0.806</td>
<td></td>
</tr>
</tbody>
</table>
表 A Modified ENF 試片不同纖維韌性之 G_{Ic}/Reference G_{IIc}/Reference K_{Ic}/Refernece K_{IIc}/Reference

<table>
<thead>
<tr>
<th>Ply angle</th>
<th>G_{Ic}/Reference</th>
<th>G_{IIc}/Reference</th>
<th>K_{Ic}/Reference</th>
<th>K_{IIc}/Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/90</td>
<td>0.018</td>
<td>0.235</td>
<td>0.367</td>
<td>0.308</td>
</tr>
<tr>
<td>15/45</td>
<td>0.027</td>
<td>0.231</td>
<td>0.373</td>
<td>0.302</td>
</tr>
<tr>
<td>30/30</td>
<td>0.015</td>
<td>0.213</td>
<td>0.362</td>
<td>0.281</td>
</tr>
<tr>
<td>60/45</td>
<td>0.033</td>
<td>0.244</td>
<td>0.386</td>
<td>0.281</td>
</tr>
</tbody>
</table>

![CLS](image1.png)

(a)

![MENF](image2.png)

(b)

圖 1 CLS 及 Modified ENF 試片設計形狀

圖 2 CLS 試片之截面剖面

圖 3 CLS 試片有效單元模擬值 G_T 與厚度法計算值 G_C 之比較 (a) $90/0/0/0$, (b) $90/15/0/0$.

![Graph 1](image3.png)

![Graph 2](image4.png)

圖 4 CLS 試片 $90/0/0/0$ 強度-位移關係
圖 3 CLS試片去應力強度及应力裂纹
(a) $|0/30, 0/0|$, $\theta = 0, -30, -60$

圖 6 CLS試片G_c與臨界轉角關係
$|0/45, 0/0|$, $\theta = 0, \pm 15, \pm 30, 45$

圖 7 Modified ENF試片有單元模擬值G_r與實驗值G_c
(a) $|0/0/0/0|$, (b) $|0/0/15/15/0/0|$

圖 8 Modified ENF試片G_c與臨界轉角關係
$|0/0 + \theta\theta - \theta/0|$, $\theta = 0, 15, 30, 45$
C. J. Kao¹ and Chyanbin Hwu²

Institute of Aeronautics and Astronautics
National Cheng Kung University
Tainan, Taiwan, 70101
Republic of China

ABSTRACT

As shown in the literature, the fracture of delamination is a mixed-mode problem and cannot be predicted by any single fracture parameter like the total energy release rate G_C, which is also revealed by the fact that different values of G_C are obtained from different test specimens such as DCB (Double Cantilever Beam), ENF (End Notched Flexure), CLS (Cracked Lap Shear). It has been shown (Chang and Hwu, 1993) that the DCB delamination test is similar to pure Mode I experiment, while the ENF delamination test is similar to pure Mode II experiment. Therefore, like the cracks in homogeneous materials, the test methods DCB and ENF are useful for the measurement of fracture toughness G_{IC} and G_{IIc} of delaminations. Based upon this conclusion, a series of CLS and MENF (Modified ENF) tests and finite element simulation are conducted in this paper to study the mixed-mode fracture criterion for delamination. The results show that the calculated values of G_I and G_{II} for delamination initiation are almost unaffected by the fiber orientation of the lamina. Moreover, the ratio of G_I and G_{II} is very stable and is approximate to that of the unidirectional composites. Hence, by imitating the fracture criterion for cracks in unidirectional composites, we propose a mixed-mode fracture criterion for delaminations in composite laminates. It should be noted that the fracture parameters used in this proposed criterion is defined for the bimaterial interface cracks, which is different from the conventional definition.

¹Graduate Student
²Professor