複合材料脫層起裂參數之量測與探討

張榮裕
成大航太所碩士班研究生
胡澄濱
成大航太所副教授

摘要

複合材料脫層現象屬於界面裂縫問題，在理論分析中裂縫尖端將有震盪現象出現，使得傳統破裂參數$K_I, K_{II}, K_{III}, G_I, G_{II}, G_{III}$，不存在而必需加以修正，本文即針對這些裂縫參數提出修正，並以DCB (Double Cantilever Beam), ENF (End Notch Flexural) 實驗及有限單元分析 (Marc 軟體) 量測新修正破裂參數之臨界值，以期建立脫層起裂判據。

在實驗中了觀實驗材料玻璃纖維層板 (Fibrite Hy9134B) 之纖維轉角對破裂參數的影響，試片有不同疊層$[0_{1}/90_{1}/90_{2}/0_{4}]$，由DCB, ENF 實驗取得脫層起裂臨界負荷($P_c$)，並以此負荷條件利用有限單元分析模擬DCB, ENF 實驗求得裂縫尖端應力場，最後將所得應力場代入破裂參數新定義式，獲得修正後破裂參數，實驗結果顯示，DCB 實驗中K_I, G_I主控脫層起裂，而ENF 實驗中則由K_{II}, G_{II}主控脫層起裂，於是可視DCB 實驗近似純I型破壞性實驗，ENF 實驗近似純II型破壞性實驗，如此我們建立了純I型及純II型脫層起裂判據而纖維轉角則對破裂參數影響不大。

Study and Measurement of Fracture Parameters for Delamination Initiation in Composites

L. E. Chang ¹ and Chyanbin Hwu ²
Institute of Aeronautics and Astronautics
National Cheng Kung University
Tainan, Taiwan, 70101
Republic of China

¹Graduate Student
²Associate Professor
ABSTRACT

Delamination in layered composite material belongs to the problem of interface cracking. Due to the oscillatory characteristics near the tip of interface crack, the fracture parameters K_I, K_{II}, K_{III}, G_I, G_{II}, G_{III} obtained by the classical definition may not exist. In this paper, we choose a proper definition provided in the literature and measure this modified fracture parameter by combining the test methods of DCB (Double Cantilever Beam), ENF (End Notch Flexural) and finite element analysis. To know the dependency on the ply orientation, the lay up of the specimen is designed as $[0\theta_1/\theta_1/\theta_1/0]_r$ and the material is chosen to be Glass/Epoxy. The critical loads obtained by the DCB and ENF tests are treated as the load input for the finite element simulation. Then the critical value of modified fracture parameter is obtained by substituting the analyzed stress field into the modified definition of fracture parameters. The results show that the fracture parameter is almost independent of the ply orientation. Moreover G_I, K_I dominate the onset of delamination in DCB test, which is similar to pure Mode I experiment, and G_{II}, K_{II} dominate the onset of delamination in ENF test, which is similar to pure Mode II experiment. Hence, we conclude that like the cracks in homogeneous materials the test methods DCB and ENF may be useful for the measurement of fracture toughness of delaminations.

一 前言

複合材料具有多項優異機械性質，使其在航空太空結構上廣泛被應用。但一般複合材料對於脫層(Delamination)抵抗能力均很低，所以脫層的發生及延伸便成了複合材料損壞不堪使用之主因。與金屬材料不同的是，複合材料脫層是一種界面裂縫，它常會因單一模式的荷重引發織鬣、剪裂和撕裂三種模式混合之破壞。這種混合模式之破壞源自裂縫尖端之振盪現象[10]，也因此傳統破裂參數 K_I, K_{II}, K_{III} 和 G_I, G_{II}, G_{III} 很可能必須加以修正，本文即針對這些破裂參數提出修正，並以實驗室測修正之破裂參數之臨界值，以期建立脫層起裂判據。

一般認為複合材料脫層的起始及成長是因爲層間應力(Interlaminar Stress)因此早期之研究傾向尋找一臨界層間應力以期判斷脫層之起裂[4-5]，然因線彈性破壞力學指出裂縫尖端之奇異性(Singularity)，使得以層間應力做為判斷脫層起裂的可能性大為降低，Wang, Crossman ... 等人[11]則利用能量法建立臨界應變能釋放率(G_c)準則，但一般複合材料脫層破壞為 I、II、III 三種破壞型態組成之混合型
態，所以實驗室所量測的脫層起裂臨界應變能釋放率 \((G_c) \) 未必是固定常數。最明顯的例子即是 DCB 實驗 (Double Cantilever Beam)、ENF 實驗 (End Notched Flexural)、CLS 實驗 (Cracked Lap Shear) 等實驗方法對同一複合材料離層進行實驗所得之 \(G_c \) 並不相同。而衆所皆知材料之正向強度 (或延性) 常常不同於剪力強度 (或延性)，因此脫層之起裂或然是混合模式，其起裂判據雖非僅單一 \(G_c \) 所能決定，很可能同時由 \(G_{IC}, G_{HC}, G_{IHC} \) 所共同組合而成，為
了能建立脫層起裂判據，求得破壞性 \(G_{IC}, G_{HC}, G_{IHC} \)，獲得脫層起裂之 \(G_{IC}, G_{HC}, G_{IHC} \) 等分離模式應變能釋放率是必要的，只是如前 Sun et. al [8] 所提出之虛擬閉合法 (Virtual Crack Closure Method) 所算之 \(G_{IC}, G_{HC}, G_{IHC} \) 因振盪行行為的關係其極限值並不存在。他們建議採用某一微小之增量 \(\Delta a \) 而非 \(\Delta a = 0 \)，如此將有某一區間算出之 \(G_{IC}, G_{HC}, G_{IHC} \) 趨於常數在本文中即以此論點計算分離模式之 \(G \) 值，再進而求
得各式之臨界值 \(G_{IC}, G_{HC}, G_{IHC} \)。然而本文
實驗結果告訴我們雖然理論分析顯示 DCB、ENF 在複合材料脫層試驗中應為混合破壞性模式，但因振盪範圍極小的關係，實驗結果顯示在 DCB 試驗中脫層起裂仍由 \(G_c \) 主控，而 ENF 試驗則由 \(G_{IC} \) 主控，因此在 DCB 及 ENF 試驗中我們分別獲得近似之 \(G_{IC}, G_{HC} \)。至於脫層應
力強度因子，本文採用 Rice [6], Wu [12] 和 Hwu
等所提出之分離修正應力強度因子，配合文中所用之實驗方法和有限元分析，而得到
\(K_{IC}, K_{HC} \) 等破壞性參數。由
於複合材料不同於一般均質材料，可能
因爲脫層界面 (Interface) 下下層極之纖維轉角不同而有不同之破壞性 \(K_{IC}, K_{HC} \)，
為了解纖維轉角對 \(K_{IC}, K_{HC} \) 之影響
在本研究中對不同 \(\theta^+ / \theta^- \) 交界面裂縫進行 ENF
及 DCB 實驗，希望能瞭解複合材料破壞性
與纖維轉角關係，而實驗結果顯示破壞性
\(G_{IC}, G_{HC}, K_{IC}, K_{HC} \) 受纖維轉角的影響極小。

二 破壞性參數

對於非均質 (Nonhomogeneous) 複合材料
交界面裂縫問題如脱層，一般古典定義之
\(K_{II}, K_{III}, K_{I}, G_{II}, G_{III}, \) 可能會因由裂縫尖端
之振盪現象而無法存在。有鑑於此 Rice [6], Wu
[12], Hwu [2]，曾分別以所推導出之應力場及位
移場定義界面裂縫的破壞性參數如下:

\[
K_{II} = \lim_{\rho \to 0} \frac{\Delta u_2(s - \Delta a) \sigma_{22}(s) ds}{\rho^3} \\
K_{I} = \lim_{\rho \to 0} \frac{\Delta u_1(s - \Delta a) \sigma_{11}(s) ds}{\rho^3} \\
K_{III} = \lim_{\rho \to 0} \frac{\Delta u_3(s - \Delta a) \sigma_{23}(s) ds}{\rho^3}
\] (2.1)

式中 \(\ll \) 是對角矩陣， \(I \) 是長度參數，可任意
選擇，不同之 \(I \) 值將不會改變 \(K \) 之大小，但會
影響其相角。\(\varepsilon \) 及 \(A \) 為下列特徵值問題之特
徵值及特徵向量 [2]

\[(M^* + \varepsilon^2 [M]) A \] = 0 \] (2.3)

式中 \(M^* \) 為雙材料矩陣 (Bimaterial Matrix)，特徵
值 \(\delta_\alpha = -\frac{1}{2} + i \varepsilon_\alpha, \alpha = 1, 2, 3 \) 是振盪指數，\(\lambda \) 則
是由不同特徵向量所組成如下式

\[\lambda = [\lambda_1, \lambda_2, \lambda_3] \]

特徵向量 \(\lambda_\alpha \) 則由各特徵值 \(\varepsilon_\alpha \) 代入 (2.3) 式可得，同時經由下列之正交化得出唯一定解

\[\lambda^T D \lambda = I \]
式中 B 爲雙材料矩陣 M 之實部。

傳統定義 G 值中之 Δa 應趨近於零並面對
界面裂紋問題因豎直現象的關係，G_{II}, G_{III}
因此無法收玫將不存在。而依 Sun, et. al [8] 等之研究
知 Δa 某一間間算出之 G 值將趨近於一常
數，他們建議此值可以適用於實際問題上，而
此時所選擇之微小值 Δa 或許與材料有關；
在本文中 Δa 0.08a 是根據實際計算所得較穩
定之區間。ε_a 爲產生豎直現象之根源，因在理
論分析求異質界面裂紋問題時，無避免在
應力場及位移場之解上出現 ε_a 項出現，若考慮
裂紋上下之材料為同一材料均質材料，
則 $\varepsilon_a = 0$，豎直現象即消失，修正定義之 K, G
可退化至傳統定義之 K, G，本文便是期望利
用實驗方法來探討此一修正定義之破裂參數
以期能建立裂層之起裂判據。

三 實驗方法

3.1 材料與試片製作

本實驗試片裂層相對於交界面並非對稱，為丁
降低試片扭曲情形及使試片有足夠強度承受負
荷，所以在裂層之最上部及最下部各由四方 0°
裂層，所以裂片層板式由 $0/0/0/0/0/0$ 等順序裂
層，有 16 層共厚 1.7mm，在裂紋中介面 $\theta'(\theta, \theta')$
間預裝 Teflon Film，當做成起始裂紋(預埋長度
分別為 30mm, 45mm, 45mm, 45mm, 50mm)，
其加熱加壓程序為首先不加壓，僅加熱至
123℃而後維持恆溫 (123℃) 60 分鐘，再加壓
0.55~0.65MPa，並加熱至 176℃而後維持恆壓
(0.55MPa~0.65MPa)，恆溫 (176℃) 二小時後降
溫。現測試本文所使用材料性質為：

$$E_1 = 44.66 \text{GPa}, \quad E_2 = 18.00 \text{GPa}, \quad G_{I} = 9.69 \text{GPa},$$

$$\nu_{12} = 0.26, \quad C_1 = 1.65 \text{GPa} \quad C_2 = 1.03 \text{GPa}$$

$$\sigma_{11} = 137\text{MPa}, \quad \sigma_{22} = 206\text{MPa}, \quad \nu_{12} = 0.55$$

3.2 實驗程序

在量測應變能釋放率 G_a 時影響 G_a 值因素
很多，如試片幾何形狀，MTS 夾頭速度，
測試環境之溫度及濕度，材料材質，而在本
試中僅針對交界面上下層板纖維轉角對
G_a 值之影響提出討論，其他如 MTS 夾頭速度
固定在 0.02mm/sec，溫度固定在室溫，試片幾
何形狀及材料材質皆固定。而在實驗過程中
載重及卸載過程 (Load-Unload) 使用位移控制
(Displacement Control)。

(i) DCB 實驗：

整個 DCB 之載重與裝置如圖 1，試片受
力後裂紋延伸很容易產生偏斜又稱 (Branch)
現象，僅 0/0, 15/-15, 30/-30, 45/-45 之試片受力後
其裂紋延伸方向能沿中介面，由於裂紋偏斜
與破壞力學理論中裂紋前緣可延伸形態模擬
(Self-Similar) 之假設不合，所以裂紋偏斜後之數據
無法使用於本文所提之破裂參數。在 DCB
實驗中用 G_a 之實驗值可由柔度法計算如下式：

$$G_a = \frac{P^2}{2B} \frac{\delta C}{\delta a}$$

P：載荷 (N) \quad \delta a：裂紋延長 (mm)

B：寬度 (mm) \quad C：柔度 (mm/N)$

分別在試片之裂紋補強正確，依裂紋起始點
之後 1~3mm 爲基點(通常是實驗第一循環裂
紋延伸距離，此時之裂紋可視為自然裂紋)，
以 4mm 為間隔記計數；每一拉力、卸力循環，
裂紋約延伸一個開口(概略數)，實験循環數以
裂紋偏斜即停止為原則，若裂紋一直維持在
中介面而不偏斜，則實験循環數取 6 次，對裂
紋偏斜之 θ^a 試片，由於有 5 種不同預埋裂
紋長度之試片，每一試片至少可得一組柔
度與裂紋長度關係，使我們有足夠數據，利
用內插法求得 \(C = Ka^3 \) 關係，而求得 \(G_c \) 之實驗值，同時將實驗所得之裂縫長度 \(L \) 當成數值
模擬 DCB 試件之輸入值，計算裂縫尖端附近之應力場並以前節所提之定義式算出分裂模式
之 \(K_I, K_{II}, K_{III} \) 及 \(G_I, G_{II}, G_{III} \)。

(ii) ENF 實驗：

ENF 實驗之載荷及装置如圖 2，試片形狀及實
驗程序同 DCB 實驗，但負荷由拉力改為壓力，
因 ENF 試件有裂縫延伸不穩定現象 \[1\]，僅能
取第一循環之數據且裂縫側長由預埋裂縫長
度延伸 1～3mm 載算（自然裂縫）而 \(G_c \) 值可由下
式算出 \[1\]：

\[
G_c = \frac{9P_c^2a^3}{2w(w^2 + 3a^2)}
\]

\(P_c \)：載荷荷重 (N) \(w \)：試片寬度 (mm) \(C \)：柔度 (mm/N) \(a \)：裂縫側長 (mm)
\(L \)：施力點距支撑點距離 (mm)

同 DCB 試件，將實驗所得之裂縫荷重 \(P_c \) 代入
有限單元之數值模擬實驗中即可求得各分離
模式之破裂參數。

3.3 有限單元分析

為求得各模式之破裂參數，必須利用破裂
參數之修正定義式 (2.1) (2.2)，由該定義知，
單純之實驗數據無法直接求得 \(G_I, G_{II}, G_{III} \) 和
\(K_I, K_{II}, K_{III} \) 之荷重數值分析模擬實際之實驗，
並將實驗所得之裂縫荷重 \(P_c \) 當成數值分析之
輸入值，求得整體試件之應力場再代入本文所
採用之定義式 (2.1) (2.2)，計算各模式之破
裂參數，對於有限單元分析本文採用 Marc 軟
體做數值模擬之用。為了節省電腦容量及執
行時間加上所需模擬試件在側向並無變化，
在本研究中將 3D 問題降為 2D 問題，所使用單
元是 8 節點廣義平面應變四邊形單元 (8 Node
Generalized Plane Quadrilateral Strain Element)，在
裂縫尖端則利用 1/4 単元描述其奇異性，各節
點自由度為 \(u, v \) 分別表 \(z, y \) 方向位移量。

四 實驗結果分析

4.1 DCB 實驗

4.1.1 實驗現象之探討

在本研究中共對多組 \(\theta^* / \theta \) 不同纖維轉
角試片進行 DCB 實驗，量測脫層起裂時之
\(G_I, G_{II}, G_{III}, K_I, K_{II}, K_{III} \) （其定義式如式 (2.1) 及式
(2.2)) 於該定義中已有二項基本假設 (1) 裂縫前
緣以類似形狀模擬（Self-Similar） (2) 裂縫表面無
曳力作用 (Free Traction) 但是在 DCB 試件中裂
縫偏於與纖維織維 (Fiber-Bridge) 是最容易發生
之現象，前者違反 (1) 之假設後者違反 (2) 之假
設 (纖維織維猶如一曳力作用在裂縫表面)，為
了獲得工字定義之 \(K_I, K_{II}, K_{III}, G_I, G_{II}, G_{III} \) 我
們必須排除裂縫延伸偏斜及纖維織維對破裂
參數之影響，以下將討論纖維織維及裂縫偏
斜，並尋求解決之道。

(1) 纖維織維效應

織維織維是複合材料在 DCB 實驗中常發
生之現象，Hung\[3\] 提出織維織維對破壞韌性
之影響在裂縫延伸超過 5mm 才會逐漸明顯，
在本文實驗中發現織維現象以 15/15 試片最
嚴重，如圖 3 為 15/15 試片的載荷—位移圖，圖
中 \(P_c \) 隨著裂縫延伸不退反昇，這似乎已說明
了纖維織維造成破壞韌性增加的原因。織維
織維效應類似在裂縫尖端施加一與負荷方向相
反之曳力，使得裂縫較難延伸因而提高了
\(P_c \)，在本研究中對 15/15 試片共有 5 組不同預
埋裂縫長度之試片每一試片取 2～6 個負荷
循環的 \(P_c, C, a \) 值 (第一循環荷重的數據未予探
計，因此此的裂縫不符自然裂縫的要求)，由
同一試片所得的五組數據可由內插法求得織維
織維效應。
係式 \(C = K a^n \) 其中 \(n = 2.443 \sim 2.76 \) 與樑理論預測之 \(n = 3 \) 相近，將此一關係式 \(C = K a^n \) 代入 (3.1) 式，可得 \(G_c \) 值，圖 3 中最後循環之 \(G_c \) 值約為裂縫起裂之三倍，同一裂縫長度之 \(G_c \) 值在不同預埋裂縫試片結果並不相同，且隨著

\[
\begin{align*}
\text{表 } 2 \text{ 所示 } a < 0.25 \text{ 島荷重循環次數之增加而增加，}
\end{align*}
\]

表 2 所示為 \(G_c \) 之實驗結果，並以表式代表之，實驗結果之計算公式

\[
\begin{align*}
G_l, G_{III}, K_l, K_{III} \text{ 值 } \text{ 係由 } G_c \text{ 值 } \text{ 得。}
\end{align*}
\]

(1) 裂縫偏斜延長

DCB試片受力後容易產生裂縫偏斜現象，偏斜的難易程度視角度差而定，試片中 \(\theta^* \) 與

\[
\begin{align*}
\text{之絕對值差越大越容易偏斜，如 } 60/15 \text{ 比 } 45/30 \text{ 容易偏斜，而偏斜方向則朝角度較大一方，如 } 45/0 \text{ 朝 } 45 \text{ 度方向偏斜。}
\end{align*}
\]

由以上裂縫織進與裂縫叉裂討論，為使裂縫及裂縫延伸延長而改進裂縫之速度，表

\[
\begin{align*}
\text{DCB試片 } \text{ 之 } G_c \text{ 值 } \text{ 由表 } 2 \text{ 所示 } a < 0.25 \text{ 島荷重循環次數之增加而增加，}
\end{align*}
\]

表 2 所示為 \(G_c \) 之實驗結果，並以表式代表之，實驗結果之計算公式

\[
\begin{align*}
G_{III}, K_{III} \text{ 值 } \text{ 係由 } G_c \text{ 值 } \text{ 得。}
\end{align*}
\]

(1) 裂縫偏斜延長

DCB試片受力後容易產生裂縫偏斜現象，偏斜的難易程度視角度差而定，試片中 \(\theta^* \) 與

\[
\begin{align*}
\text{之絕對值差越大越容易偏斜，如 } 60/15 \text{ 比 } 45/30 \text{ 容易偏斜，而偏斜方向則朝角度較大一方，如 } 45/0 \text{ 朝 } 45 \text{ 度方向偏斜。}
\end{align*}
\]
很小可省略，而有 $K_T = K_{IC}, G_I = G_{IC}$，所以我们可以直接在 DCB 試驗中检测到第一層裂縫的影響很小。因此我們預期 ENF 實驗將有類似的結果，亦可幫助我們直接探索到 G_{IC} 及 K_{IC} 且受裂縫角影響很小，也因為有此預測我們僅安排五組不同之 $	heta^+/	heta^-$ 試片
(0/0, 15/-15, 30/-30, 45/-45, 60/-60) 進行實驗。結果顯示 G_{II}, G_{III} 遠小於 $G_{II} \& K_{II}, K_{III}$ 遠
小於 K_{II}，同 DCB 實驗，利用 Ramkumar[7] 所提混合式判斷準則，可得 $K_T = K_{IC}, G_I = G_{IC}$，
因此由有限元分析中算出 ENF 試驗在界面
荷重下之 K_T 及 G_T 值即我們所計量測之破裂
韌度 K_{IC} 及 G_{IC}。又因為總能量釋放率近似
於 G_T，所以脫層破壞性度 G_{IC} 之量測可以 G_T 值直接近似求得，
如此可省略有限元之模擬程序，而 K_{IC} 值則
可由 Hwu and Hu [2] 所提出之 G_I, K_{II}, K_{III} 之關係式求得，式中 $K_{II}, K_{III}, G_{II}, G_{III}$ 均可假
設為零，唯需注意數據之取捨，在此我們建
議做五組以上不同預埋裂縫之試片，對每一
試片均取第二循環荷重之數值以避免機械
效應及裂縫偏斜延申。

4.1-3 細繩轉角之影響

圖 4-5 為 $60^\circ-	heta^+$，$G_{IC}(K_{IC}), \theta^+ = 0, \pm 15^\circ$，
$\pm 30^\circ, \pm 45^\circ, \pm 60^\circ, \pm 75^\circ, 90^\circ$, 圖中小圓圈 (o) 為各試
片 G_{IC}, K_{IC} 平均值，圖圈上下直線表各試片
G_{IC}, K_{IC} 值之範圍，由圖 4-5 可知 G_{IC}, K_{IC} 均
呈帶狀分佈，K_{IC} 散佈在 50~80 (MPa√m) 之
間，而 G_{IC} 則在 0.15~0.25 (KJ/mm2) 明顯偏
在短直線，所以有破壞性態 (K_{IC}, G_{IC}) 受細
繩轉角影響不大之結論。

4.2 ENF 實驗：

ENF 實驗在試片受力後裂縫達達臨界負荷
P_C 時常有突然延伸之不穩定現象，如圖
6[ENF 30/30 較重一位移] 很明顯的在 P_C 處負
荷會突然降低若此時觀察裂縫則已延伸而遠
離裂縫起始點，基於以上不穩定理由，本文採
用 Carlsson[1] 所提出之計算式 (3.2) 式，該式只
需將到第一循環之數值即可求出 G_{IC} 值，由
脫層 DCB 實驗得知該試驗類似均質材料 DCB
實驗，可直接求出 G_{IC}, K_{IC} 且其結果受纖維
轉角的影響很小。因此我們預期 ENF 實驗將
有類似的結果，亦可幫助我們直接探索到
G_{IC} 及 K_{IC} 且受裂縫角影響很小，也因為
有此預測我們僅安排五組不同之 $	heta^+/	heta^-$ 試片
(0/0, 15/-15, 30/-30, 45/-45, 60/-60) 進行
實驗。結果顯示 G_{II}, G_{III} 遠小於 $G_{II} \& K_{II}, K_{III}$ 遠
小於 K_{II}，同 DCB 實驗，利用 Ramkumar[7] 所提
混合式判斷準則，可得 $K_T = K_{IC}, G_I = G_{IC}$，
因此由有限元分析中算出 ENF 試驗在界面
荷重下之 K_T 及 G_T 值即我們所計量測之破裂
韌度 K_{IC} 及 G_{IC}。又因為總能量釋放率近似
於 G_T，所以脫層破壞性度 G_{IC} 之量測可以
G_T 值直接近似求得，如此可省略有限元之
模擬程序，圖 7(a)(b) 是公式法計算值 G_I 與有
限元分析模擬值 G_T 之比較相差不大，同
樣地 K_{IC} 可由 G_I, K_{II} 之關係式求得，而由圖
8(a)(b), G_{IC}, K_{IC} 呈常數分布受纖維轉角之
影響不大，此結論與 DCB 實驗相同。

五 結論

1. 經本研究實驗結果顯示，在 DCB 實驗
中 K_{II}, K_{III} 遠小 K_I, G_{II}, G_{III} 遠小於 G_I, \n而 ENF 實驗中則 K_I, K_{III} 遠小於 K_{II} 及
G_I, G_{III} 遠小於 G_{II}, 根據 Ramkumar[7] 所提
混合式脫層起裂判斷，而有 DCB 實驗中
$G_I = G_{IC}, K_I = K_{IC}$ 及 ENF 實驗中
$G_{II} = G_{IC}, K_{II} = K_{IC}$ 等結果，代表 DCB
實驗為近似純 I 型破壞性實驗，而 ENF 則屬
近似純 II 型實驗，並建立純 I 型，純 II 型脫
層起裂判斷。

2. 由 1. 所述 DCB 實驗為近似純 I 型實驗，
ENF 實驗為近似純 II 型實驗，因此 DCB 實
驗所得 G_C 近似 G_{IC} 而 ENF 實驗所得 G_C 近
似 G_{IC} 及 K_{IC} 值可由 Hwu and
Hu [2] 所提之 G_i 與 $K_{i;1} = I, II, III$ 之關係式求得，如此便可省卻有限元之模擬程序。

3. 本研究實驗所得 $K_{IC}, G_{IC}, K_{II}, G_{II}$ 經觀察受纖維轉角影響不大。

參考文獻

表1 DCPB試片 G_{IC} 不同起始裂縫長度對 G_0 影響

<table>
<thead>
<tr>
<th>Specimen No</th>
<th>Loop No</th>
<th>a_0 (mm)</th>
<th>a_1 (mm)</th>
<th>$G_0 (KJm^2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>42.9</td>
<td>50.3</td>
<td>0.12</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>44.0</td>
<td>48.8</td>
<td>0.19</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>29.6</td>
<td>50.7</td>
<td>0.39</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>54.3</td>
<td>50.8</td>
<td>0.57</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>59.1</td>
<td>51.3</td>
<td>0.40</td>
</tr>
</tbody>
</table>

G_0: Initial Crack Length

a_0: Crack Length